Aromatic Sulphonation. Part 76.¹ Sulphonation in Sulphuric Acid of ω -Phenylalkanes containing the NH₃⁺, NMe₃⁺, or NO₂ Substituent at Position 1. Comparison of the Side-chain NH₃⁺, NMe₃⁺, NO₂, SO₃H, and OSO₃H Substituent Effects

By Rob Bregman and Hans Cerfontain,* Laboratory for Organic Chemistry, University of Amsterdam, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands

The sulphonation of a series of ω -phenylalkanes containing at position 1 the NH₃⁺, NMe₃⁺, and NO₂ substituent in concentrated sulphuric acid at 25 °C has been studied, and partial rate factors for the mechanism with H₂S₂O₇ as sulphonating entity are reported. The limiting values of the partial rate factors for *para*- and *meta*-substitution are equal to those of the corresponding 1-phenylalkanes, but the limiting value for *ortho*-substitution is smaller. The variation of the degree of *ortho*-substitution with the nature of the substituent (NMe₃⁺, NH₃⁺, NO₂, OSO₃H, SO₃H, and Me) is taken to indicate the operation of an inductive effect in addition to the now generally accepted field effect.

THE effect on the reactivity of benzene of a positively charged substituent at the end of an alkyl side-chain, or directly attached to the phenyl group, has been extensively studied only in aromatic nitration, mainly by Ridd,² but also by others.³ It was therefore thought of interest to study the sulphonation of this type of subelectrophilic substitution relevant to our work was published recently.⁶

RESULTS

The first-order rate constants for sulphonation of Ph- $(CH_2)_n X [X = NH_3^+, NMe_3^+, and NO_2]$ in a large excess of

FIGURE 1 Rate profiles for sulphonation in sulphuric acid: A, toluene,^a slope 0.69–1.23; B, Ph(CH₂)₄NH₃⁺, slope 0.72–1.20; C, Ph(CH₂)₄NMe₃⁺, slope 0.73–1.03; D, Ph(CH₂)₃NO₂, slope 0.75; E, Ph(CH₂)₃NH₃⁺, slope 0.69–0.74; F, Ph(CH₂)₃NMe₃⁺, slope 0.62–0.84; G, benzene,^b slope 0.90; H, Ph(CH₂)₂NO₂, slope for 87–97% H₂SO₄, 0.84; I, Ph(CH₂)₂NH₃⁺, slope for >89% H₂SO₄, 0.91; J, Ph(CH₂)₂NMe₃⁺, slope for >92% H₂SO₄, 0.98; K, PhCH₂NH₃⁺, slope of dotted line 0.91; L, PhCH₂NMe₃⁺, slope for <100.18% H₂SO₄, 1.01; M, PhNH₃⁺,^c slope 1.54; N, PhNMe₃⁺,^d slope 1.5–4.8; O, PhNO₃,^e slope 1.1–2.3. The activities of H₂SO₇ were taken from ref. f and for acid concentrations below 97% H₂SO₄ calculated from the activity data of H₂SO₄ and H₂O given in ref. g

^a A. W. Kaandorp, H. Cerfontain, and F. L. J. Sixma, *Rec. Trav. chim.*, 1963, 82, 113. ^b A. W. Kaandorp. H. Cerfontain, and F. L. J. Sixma, *Rec. Trav. chim.*, 1962, 81, 969. ^e P. K. Maarsen and H. Cerfontain, *J.C.S. Perkin II*, 1977, 1008. ^d J. C. D. Brand, *J. Chem. Soc.*, 1950, 1004. ^e J. C. D. Brand and W. C. Horning, *J. Chem. Soc.*, 1952, 3922. ^f C. W. F. Kort and H. Cerfontain, *Rec. Trav. chim.*, 1969, 88, 1298. ^g Idem, ibid., 1968, 87, 24.

strate, especially in relation to our recent results on the sulphonation of ω -phenylalkane-1-sulphonic acids ⁴ and ω -phenylalkan-1-ols (as their sulphates).⁵ We now report the sulphonation in sulphuric acid of a series of ω -phenylalkane-1-ammonium ions, the corresponding trimethylammonium ions, and two ω -phenyl-1-nitro-alkanes. A theoretical approach to the effects of positively charged substituents on isomer distribution in

sulphuric acid $(_{ps}k_1)$ are collected in Table 1.[†] For a given sulphuric acid concentration and a given substituent X the overall rate constant increases with increasing length of the side-chain to level off to a limiting value which is significantly greater than the rate constant of benzene,⁷ but somewhat smaller than that of toluene.⁸ The rate profiles of the

[†] Phenylnitromethane in both concentrated aqueous and fuming sulphuric acid was found to decompose.

	IABLE I
First-order	sulphonation rate constants at 25.0 \pm 0.5 °C
	$1045 (c^{-1} + 20/)$

			$10^{-}R_{1}(s^{-}, \pm 3^{-}\%)$								
			Ph(CH	$(_{2})_{n}NH_{3}^{+}$			Ph(CH)"NMe ₃ +		Ph(CH	$[_2)_n NO_2$
H ₂ SO ₄ (wt %)	$-\log a_{\mathbf{H_{3}S_{2}O_{7}}}*$ (±0.04)	$n = 1$ $\lambda^{\dagger} : 268.0$	n = 2 0 267.0	n = 3 266.5	n = 4 266.0	$\overbrace{\substack{n=1\\275.0}}^{n=1}$	$n = 2 \\ 267.0$	n = 3 266.0	n = 4 265.0	$\overbrace{\begin{array}{c}n=2\\267.0\end{array}}^{n=2}$	n = 3 274.0
${81.8 \pm 0.1 \atop 83.3}$	$13.02 \\ 12.35$			$\begin{array}{c} 0.095 \\ 0.32 \end{array}$	0.36			$0.075 \\ 0.19$	0.27		
84.8 85.5	$11.74 \\ 11.35$		0.043	0.83	3.0			0.47	2.8	$\begin{array}{c} 0.072\\ 0.124\end{array}$	
87.0 88.8	10.88 10.23		0.091 0.30	$\begin{array}{c} 3.4 \\ 12.6 \end{array}$	12.2		0.064 0.184	$\begin{array}{c} 2.1 \\ 8.2 \end{array}$	10.8	0.97	6.1 19.1
90.3 91.3	9.73 9.39		0.76	34 56	99		0.80	20 37	96	2.5 4.8	43 79
92.1 93.3	9.16 8.80	0.020	2.9 6.0	84 157			1.46 2.9	68 130	390	8.2 15.5	$\frac{110}{230}$
95.8 96.9 97 9	8.03 7.62 7.59	0.029	27 38 87				17.0			63	
97.5 98.1	7.32 7.38 7.09		114 194				00 64 199			210 300	
98.2 99.70 ± 0.01	7.05 5.53	$0.25 \\ 2.9$					122				
99.82 99.91	$\begin{array}{c} 5.14 \\ 4.65 \end{array}$	7.8 27				0.096					
99.96 99.99	4.27 3.80	81 210				0.64 2.4					
100.04 100.17	$\begin{array}{c} 2.99 \\ 2.30 \end{array}$					13.5 74					

* C. W. F. Kort and H. Cerfontain, Rec. Trav. chim., 1969, 88, 1298. † Wavelength in nm at which the rate measurement was made.

TABLE 2 Isomer distribution in the sulphonation in sulphuric acid at 25.0 ± 0.5 °C

	H.SO	Ise			
Substrate	(wt %)	ortho	meta	para	Ref.
PhCH ₂ NH ₃ +	98; 102	5 + 1	56 + 5	39 + 5	
$Ph(CH_2)_2NH_3^+$	92; 98	7 + 2	11 + 2	80 + 5	
Ph(CH ₂) ₃ NH ₃ ⁺	92; 98	8 + 2	6 + 2	85 + 5	
$Ph(CH_2)_4NH_3^+$	90	7 + 2	5 + 2	88 + 5	
(PhCH ₂) ₂ NH ₂ ⁺	102	7 + 3	43 + 5	50 + 5	
(PhCH ₂) ₃ NH ⁺	102	3 ± 2	-		
PhCH ₂ NMe ₃ +	102	4 + 1	78 + 3	18 + 2	
$Ph(CH_2)_2NMe_3^+$	92; 98	(4 ± 4^{a})	16 + 5	80 + 5	
$Ph(CH_2)_3NMe_3^+$	92 ; 98	$(2 \pm 4 \circ)$	13 + 5	85 + 5	
$Ph(CH_2)_4NMe_3^+$	92; 98	$(2 \pm 4 \circ)$	10 ± 5	88 + 5	
Ph(CH ₂) ₂ NO ₂	98	4 + 2	10 + 2	80 + 5	
Ph(CH ₂) ₃ NO ₂	92; 98	6 + 2	7 + 2	85 + 5	
Ph(CH ₂) ₇ Cl	98	33 + 4			
PhMe	91.0	48 ⁵	4 6	48 ^b	<i>c</i> . <i>d</i>
PhMe	95.8	50.2	4.9	44.9	d
PhMe	98.8	49.3	5.2	45.5	d
Ph(CH ₂) ₇ Me	95	34 ± 2			е

^a% ortho = 100 - % meta - % para. ^bGraphically interpolated value. ^cL. Vollbracht, Thesis (in English), University of Amsterdam, 1962, p. 65. ^dH. Cerfontain, F. L. J. Sixma, and L. Vollbracht, Rec. Trav. chim., 1963, 82, 659. ^eH. Cerfontain and Z. R. H. Schaasberg-Nienhuis, J.C.S. Perkin II, 1974, 536.

various substrates and of some other relevant substrates are shown in Figure 1. The profiles show that the reactivity order for a given chain length is $NO_2 > NH_3^+ > NMe_3^+$, and that the reactivity for a given substituent X increases with increasing length of the polymethylene chain. The sulphonation isomer distributions for the three types of substrates are given in Table 2. The partial rate factors for the three types of substrates, derived from the data of the Tables 1 and 2, are compiled in Table 3. Those of $Ph(CH_2)_n X [X = NH_3^+, n = 0, 1; X = NMe_3^+, n = 0, 1;$ $X = NO_2, n = 0]$ were calculated from the reported sulphonation isomer distributions (ref. 9 and Table 2*) and the estimated rate constants for these substrates (ref. 9, 12,

* For PhNMe₃⁺ the amount of *ortho*-substitution was taken to be < 2%, *i.e.* the upper limit of *ortho*-sulphonation of t-butyl-benzene,¹⁰ and the *meta*: *para* ratio the value reported by Brand.¹¹

13 and Table 1) relative to that for benzene.⁷ The $k_{\rm PhY}/k_{\rm PhH}$ ratios (Y = NO₂, NMe₃⁺, NH₃⁺, CH₂NH₃⁺) were estimated by a stepwise comparison by using the kinetic results of *p*-difluorobenzene,¹⁴ the reactivity of which is between those of PhX and benzene, as described ^{15,16} elsewhere.[†] The partial rate factors for the SO₃⁻, (CH₂)_n-SO₃H,⁴ (CH₂)-OSO₃H ⁵ and (CH₂)_nMe ¹⁷ substituents have been published previously.

The isomer distributions for the sulphonation of (Ph-CH₂)_pNH_{4-p}⁺ [p = 2, 3] have also been determined (Table 2). The degree of *ortho*-substitution decreases with increasing p. The sulphonation of (PhCH₂)₃NH⁺ is much

[†] The rate constants for the substrates relative to that for benzene ($k_{\rm PhY}/k_{\rm PhH}$) thus determined are: PhNO₂, 2.9×10^{-11} ; PhNH₃⁺, 1.6×10^{-9} ; PhNMe₃⁺, 6.8×10^{-11} ; PhCH₂NMe₃⁺, 4.3×10^{-7} .

slower than that of $(PhCH_2)_2NH_2^+$,* the rate constant for which is about the same as that for $PhCH_2NH_2^+$.

DISCUSSION

The sulphonation of aromatic substrates in 90-99% H_2SO_4 proceeds by the sequence (1)-(4).¹⁸ For the sulphonation at positions which do not exhibit steric

$$ArH + H_2S_2O_7 \Longrightarrow Ar \begin{pmatrix} SO_3H \\ H \end{pmatrix} + HSO_4^-$$
(1)

$$\operatorname{Ar}_{H}^{A} + \operatorname{HSO}_{4}^{-} \Longrightarrow \operatorname{Ar}_{H}^{A} + \operatorname{H}_{2}\operatorname{SO}_{4} \qquad (2)$$

$$\operatorname{Ar}_{H}^{*} \xrightarrow{\operatorname{SO}_{3}^{-}} + \operatorname{HSO}_{4}^{-} \longrightarrow \operatorname{ArSO}_{3}^{-} + \operatorname{H}_{2}\operatorname{SO}_{4}$$
(3)

$$ArSO_3^- + H_2SO_4 \Longrightarrow ArSO_3H + HSO_4^-$$
 (4)

restrictions step (3) becomes rate limiting only at acid concentrations >95% H₂SO₄.¹⁹ The rate-limiting character of step (3) is enhanced for sulphonation at positions which do encounter steric restrictions.²⁰

The dependence of the logarithm of the partial rate factors on the length of the side-chain for the three types of compounds are shown in Figure 2 in which they are further compared with that of the SO₃H substituent (which was found to exhibit about the same overall electronic effect as the OSO_3H substituent ⁴). For low values of n, the rate constants all increase strongly with increasing n to reach eventually limiting values which for meta- and para-substitution are equal to those for the corresponding 1-phenylalkanes (Figure 2A, B), as observed with the ω -phenylalkane-1-sulphonic acids⁴ and the ω -phenyl-1-alkyl hydrogen sulphates.⁵ On the other hand, the limiting f_a values for high values of nappear to be lower than those for the corresponding 1phenylalkanes and the ω -phenylalkane-1-sulphonic acids (Figure 2C). Also the degree of ortho-substitution is smaller for the nitration and bromination of Ph(CH₂)_n-X $[X = NH_3^+, NMe_3^+, SMe_2^+; n = 1, 2]$ ²¹ than for the nitration 22 and bromination 21 of the corresponding 1phenylalkanes.

For a given side-chain length with $n \ge 2$, the degree of *ortho*-sulphonation increases with variation of the substituent in the order $\text{NMe}_3^+ < \text{NH}_3^+ = \text{NO}_2 <$ $\text{SO}_3\text{H} \le \text{OSO}_3\text{H} < \text{Me}$ (*cf.* Table 2 and refs. 4, 5) which is the order of decreasing positive charge of the atom of the substituent attached to the polymethylene chain with the exception of NO_2 .[†]

The equality of the limiting partial rate factor values, *i.e.* for $n \ge 4$, for *para*-substitution of the ammonium type of substrates and the 1-phenylalkanes seems to render the existence of an intramolecular close-contact ammonium-phenyl (charge transfer) interaction for the ammonium type of substrates unlikely.

According to Rees, Ridd, and Ricci the variation in

FIGURE 2 Partial rate factors for *para-*(A), *meta-*(B), and *ortho-*(C) sulphonation of $Ph(CH_2)_n X$

X	
NO ₂	0 0
N+H ₃	<u> </u>
N+Me ₃	<u> </u>
SO ₃ H	$\wedge - \cdot - \cdot - \wedge$
Me	+ +

the partial rate factors for *meta*-substitution (which are a measure of non-conjugative interaction) of $Ph(CH_2)_n$ - NMe_3^+ with the side-chain length is more consistent with the operation of a field effect than with that of an inductive effect,^{2a} although other work by Rees and Ridd

^{*} $(PhCH_2)_2NH_2^+$ and $(PhCH_2)_3NH^+$ in 100.0% H_2SO_4 at 25 °C for one week are sulphonated to the extent of 100% and 50% per phenyl ring, respectively.

[†] The effective positive charge at nitrogen of *e.g.* the PhNH₃⁺ ion in sulphuric acid is substantially less than that of the PhNMe₃⁺ ion as result of dispersion of the positive charge by solvation,⁶ *i.e.* by hydrogen bonding of the ammonium hydrogens of PhNH₃⁺ with the solvent bisulphate ions.

on the hydrogen exchange in a bridged anthracene derivative carrying a NH_3^+ substituent ²³ does not seem in line with this view. The present results for the *ortho*substitution with the neutral but multipolar substituents like NO_2 , SO_3H , and OSO_3H in relation to those of the ammonium substituents cannot be easily reconciled with the presently favoured view of the selective importance of the through space (field) effect, and may indicate the additional operation of an inductive effect *via* the σ bonds of the methylene chain.

As pointed out by Ridd,²⁴ the degree of ortho-substitution of the ions $Ph(CH_2)_nNH_3^+$ and $Ph(CH_2)_nNMe_3^+$ for a given value of *n* decreases in the order bromination ²¹ > nitration ²² > sulphonation (Table 2). This order seems to indicate that the disturbing factor for the ortho-substitution is steric rather than polar in origin. This interpretation of course infers that the conformation of the carbon chain is not restricted to that giving the greatest separation of the pole from the phenyl ring.²⁴ The Hammett-Brown reaction constant ρ^+ of solvation of this ion, as compared with the PhNMe₃⁺ ion, due to hydrogen bonding (see before) which reduces the effective positive charge at nitrogen. This difference between the two types of ammonium ions is still apparent for the ions with n = 1 and 2.

EXPERIMENTAL

Materials.—The ω -phenyl-1-aminoalkanes, 1-phenyl-7chloroheptane, and phenylnitromethane were commercial products. The salts Ph(CH₂)_nNMe₃+Br⁻ (n = 1, 2, 3) were prepared by the introduction of trimethylamine vapour into an ethereal solution of the corresponding bromide, and recrystallization of the precipitate from ethanol.²⁷ Ph-(CH₂)₄NMe₃+I⁻ was prepared by refluxing the corresponding amine (8.6 g), methyl iodide (30 g), and sodium carbonate (5.6 g) in a mixture of water (100 ml) and ethanol (50 ml) for 3 h,²⁸ subsequent removal of the solvent, and recrystallization of the residue from ethanol. The two ω -phenyl-1nitroalkanes were prepared from the corresponding bromides.²⁹ The crude product was purified by preparative g.l.c. (2 m copper column, 20% Apiezor M on Kieselguhr,

TABLE 3

Partial rate factors and substituent constants for the sulphonation of some monosubstituted benzenes by the $H_2S_2O_7$ mechanism at 25 °C

Substituent	fo a	<i>f</i> _m <i>a</i>	$f_{\mathbf{p}}$ a	folfp	$f_m f_p$	σ^+_m	σ^+_p
NH ₃ +	7×10^{-11}	$2 imes10^{-9}$	$4 imes 10^{-9}$	0.02	0.55	1.5	1.5
CH ₂ NH ₃ +	$1.2 imes10^{-5}$	$1.3 imes 10^{-4}$	$1.8 imes 10^{-4}$	0.13	0.7	0.68	0.66
$(CH_{2})_{2}NH_{3}^{+}$	0.017	0.027	0.39	0.04	0.07	0.28	0.07
$(CH_2)_3NH_3^+$	0.6	0.5	13.4	0.05	0.04	0.06	-0.20
$(CH_2)_4 NH_3^+$	2.4	1.8	62	0.04	0.03	-0.04	-0.31
NMe ₃ +	< 4 $ imes$ 10 ⁻¹²	16×10^{-11}	6×10^{-11}	< 0.07	2.8	1.7	1.8
CH ₂ NMe ₃ +	$5 imes10^{-8}$	$10 imes 10^{-7}$	$4 imes 10^{-7}$	0.11	2.2	1.05	1.12
$(CH_2)_2NMe_3^+$	$(1-8) \times 10^{-3}$	0.018	0.18	ca. 0.02	0.10	0.31	0.13
(CH ₂) ₃ NMe ₃ ⁺	0.04-0.3	0.7	8.9	ca. 0.01	0.08	0.03	-0.17
$(CH_2)_4 NMe_3^+$	0.1 - 1.1	1.8	52	ca. 0.01	0.04	-0.05	-0.30
NO ₂	\leq 4 $ imes$ 10 ⁻¹³	9×10^{-11}	$3 imes 10^{-12}$	≤0.17	33.0	1.8	2.0
$(CH_2)_2NO_2$	0.03	0.07	1.0	0.02	0.06	0.21	0.007
$(CH_2)_3NO_2$	0.7	0.8	20	0.04	0.04	0.02	-0.22

^a The precision of the partial rate factors follows from the precision of the data in the Tables 1 and 2.

for sulphonation in sulphuric acid by the mechanism shown in equations (1)—(4) is -5.7 ± 0.3 .¹⁸ The substituent constants σ^+ of $(CH_2)_n X$ (X = NH₃⁺, NMe₃⁺, and NO₂) calculated from the partial rate factors with this value are given in Table 3.

In the acid range of 90-98% H₂SO₄ the graphs of log k vs. log $a_{\rm H_2S,O}$, are linear, as observed for chlorobenzene,¹⁹ and with a similar slope. It is therefore suggested by analogy that the sulphonation in that acid range of the substrates presently studied proceeds by the mechanism proposed for chlorobenzene,¹⁹ viz. by the sequence (1)-(4) with (3) as rate-limiting step.

The variation of log k with log $a_{\rm H_2S_2O_7}$ of PhCH₂NH₃⁺ (Figure 1) is very similar to that of the sulphonation of p-difluorobenzene,¹⁴ phenylmethanesulphonic acid,²⁵ and phenylsulphamic acid ²⁶ and may therefore be explained in terms of the mechanism proposed for those substrates.¹⁴

With the $PhNH_3^+$ and $PhNMe_3^+$ ions, the partial rate factors are very small (in the order of 10^{-9} and 10^{-10} , respectively). This may be explained in terms of the combined inductive and direct-field effect. The higher values for the $PhNH_3^+$ ion are ascribed to a higher degree 42—60 mesh, 158 °C, 85—90 ml He/min). Satisfactory elemental microanalysis were obtained for all compounds with the exception of $Ph(CH_2)_3NO_2$ which, according to ¹H n.m.r., contained *ca.* 15% of an impurity.* The concentrations of the sulphuric acid solutions employed were determined by measuring the rate constants of sulphonation of substrates for which the rate constants had been determined with high precision previously, *viz.* $Ph(CH_2)_3SO_3K$,⁴ potassium biphenyl-3- and -4-sulphonate,³⁰ bromobenzene,³¹ *p*-difluorobenzene, and 1,2,3,4-tetra-fluorobenzene.¹⁴

Sulphonation Procedures and Spectrometers.—The experimental procedures and ¹H n.m.r. spectrometers employed have been described previously,^{4,17} except for the Bruker HX-360 instrument used for the analysis of the monosulphonic acid mixtures obtained with both $PhCH_2NH_3^+$ and $PhCH_2NMe_3^+$.

In order to improve the resolution of the ¹H n.m.r. spectra, the fuming sulphuric acid reaction mixtures were usually diluted to *ca.* 80% H₂SO₄ by bubbling nitrogen through the solution (to remove SO₃) and subsequently adding ice.

* The reaction of the impurity in a given sulphuric acid concentration was found to be very slow relative to the sulphonation of $Ph(CH_2)_3NO_2$. TABLE 4

¹H N.m.r. data of Ph(CH₂)_nX [X = NO₂, NH₃⁺, and NMe₃⁺] and sulphonation products

$n = X$ Ar Solvent $2'-H = 3'-H = 5'-H = 6'-H = C^{1}H_{\bullet} = C^{3}H_{\bullet}$	$\overrightarrow{C^3H_2 C^4H_2}$ NH_3^+ NMe_3^+
	0 112 0 112 1013
2 NO ₂ Ph Cl_4 7.40 -7.75 3.00 -4.64	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 60 4
3 NO_2 Ph Cl ₄ $-7.40 - 7.60^{\circ}$ 3.13° 3.13° 2.11°	5.09 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.02 ° 9.79 ¢
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.70 - 5 G1 d
3 NO_2 2,4 - $(-1)(503 \text{ H})_2$ 107% -12504 3.21 6.93° 6.43 $^{\circ}$ 5.61 $^{\circ}$ 5.10 $^{\circ}$	5.01 -
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.8
$1 N\Pi_3 + 2,4 - (\xi_{\Pi_3}(5) - \xi_{\Pi_2}) + 2,3 + 2,5 + 3,2 $	0.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.8 6 55
$2 \text{ Nn}_3 + 4 - C_9 n_4 + 5 C_9 n_4 = 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5$	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2044 158 (NH)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.04^{-1} $1.00(111_2)$ 3.65 a 6.40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00 ° 0.40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	155 f 9 69 4 0 07 (NH)
4 $N\Pi_2$ Π_1 Π_2 Π	9 1 8 d 3 67 d 6 50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.18 3.07 0.00 9.28 d 2.75 d 6.16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.38 3.75 0.10 3.59
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.57
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.53
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 56
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 64
$2 \text{MMc}_{3} \frac{1}{2} \frac{1}{2}$	3.67
$2 \text{NMG}_3^+ 2, 3 + C_6 I_3 (5 C_3 I I)_2 102 /_0 I_2 5 C_4 5.20^+ 5.20^+ 5.51^- 5.51^- 5.44^+ 3.53^- \\ 9 \text{NMG}_5^+ 2' 5' (-1) (S - 11) 1020' 1 S - 2 27^- 0 \; 0 2 2 2 2 2 2 2 2 2 $	5.07
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 69 1 3 45
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.76 š 3.54
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 78 4 3 57
$3 \text{ NMc}_{+} + 3^{\circ} 5^{\circ} C H (SO, H). 98^{\circ} H (SO, 88^{\circ} H) = 88^{\circ} H (SO, 88^{\circ} H)$	5.10 5.01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	172/347 • 311
$4 \text{ NMc}_{3} + 4^{-}\text{CHSO,H} 90^{0}\text{HSO,} 796^{b}837^{b} 332^{d} 329^{d} 329^{d}$	d - 3.74 d 3.57
4 NMc ₂ + 2' 4'.C.H. (SO.H). 99 5 9' H.SO. 901' 869 ^b 825 ^b 350 4 215	$d \rightarrow 3.50^{d} 3.4$
	$I = 7 H_7 I = 0.1$

5 Hz. ^h Multiplet.

Sulphonic Acid Analysis.—The isomer distributions of the monosulphonic acid mixtures were determined by multicomponent ¹H n.m.r. analysis ³² of the sulphuric acid reaction mixtures directly (cf. ref. 17), and of the mixtures obtained after further sulphonation upon addition of sulphur trioxide (and if required heating to 100 °C) to yield a mixture of disulphonic acids. The o- and the p-sulphonic acid then yield solely the 2',4'-disulphonic acid; $^{33-35}$ it was further assumed that the *m*-sulphonic acid in strongly fuming sulphuric acid yields predominantly the 3',5'-disulphonic acid.^{34,35}

The ¹H n.m.r. data of the various assigned mono- and di-sulphonic acids are listed in Tables 4 and 5.

For the three types of substrates the isomer distributions

TABLE	5
TUPLE	U

¹ H N.m.r. data for	$(PhCH_2)_n NH_{3-n}$ a	and sulphonation products	
--------------------------------	-------------------------	---------------------------	--

							8			
	((ArCH ₂),X	Solvent	Arom.			<u> </u>			
'n	x	Ar	- C	2′-H	3′-H	4'-H	5′-H	6′-H	CH2	NH_{4-n}^+
2	NH	Ph	CCl.			— 7.63 ª —		>	4.11	1.76 (NH)
2	NH,+	Ph	98% H,SO	◀		— 7.80 ª —			4.59	6.76`´
2	NH ₂ +	4'-C ₆ H ₄ SO ₃ H	102% H,SO	8.23 ^b	8.55 %				4.99	7.23
2	NH ₂ +	3'-C,H_SO,H	102% H ₂ SO	8.59		8.55	8.37	8.29	4.99	7.23
2	NH ₂ +	2'-C,H ₄ SO,H	102% H ₂ SO						5.2	
2	NH ₂ +	$2', 4' - C_{6}H_{3}(SO_{3}H)_{2}$	108% H ₂ SO ₄		9.35		9.05	8.72		7.18
2	NH_2^+	$3', 5'-C_{6}H_{3}(SO_{3}H)_{3}$	108% H ₂ SO ₄	9.12		9.35			5.20	7.18
3	N	Ph	CCl ₄	←	7	.45—7.85			3.91	
3	NH+	Ph	98% H ₂ SO ₄		'	7.45—8.10 °		>	4.59	6.9
3	NH+	4′-C ₆ H₄SO₃H	102% H ₂ SO ₄	8.15 ^b	8.56 %				5.06	7.61
3	NH+	3'-C ₆ H ₄ SO ₃ H	102% H ₂ SO ₄	8.60		8.50	8.27	8.29	5.06	7.61
3	NH+	$2'-C_{6}H_{4}SO_{3}H$	102% H ₂ SO ₄						5.2^{5}	
3	NH+	$3', 5'-C_6H_3(SO_3H)_2$	108% H ₂ SO ₄	9.00		9.35				
		Sing	let. ^b Doublet	I = 6 Hz.	'Two mul	tiplets in ar	n area ratio	of 3:2.		

were determined as follows. For $Ph(CH_2)_2NO_2$ the degree of ortho-substitution was determined from the area ratio of the low field benzylic hydrogen absorption to the total benzylic hydrogen absorption. For Ph(CH₂)₃NO₂ it was calculated from the ratio of the difference in area of the low field methylene absorption [which comprises the benzylic $(= \alpha$ -methylene) hydrogens of the *o*-sulphonic acid and the γ -methylene ones of the three sulphonic acids] and the area of the benzylic hydrogens of the p- and *m*-sulphonic acid centred at δ 3.3. The degree of *meta*-substitution for the two nitro-compounds was estimated from the disulphonic acid spectra, viz. from the ratio of the singlet absorptions of the 4'-H of the 3',5'-disulphonic acid and the 3'-H of the 2',4'-isomer, and for $\mathrm{Ph}(\mathrm{CH}_2)_2\mathrm{NO}_2$ also from the ratio of the benzylic hydrogens of these two disulphonic acids.

The degree of ortho-substitution obtained with (PhCH₂)_n- NH_{4-n}^+ (n = 1, 2, 3) was determined from the contribution of the low field benzylic absorptions at ca. δ 5.2 to the total benzylic absorption. For the homologues of $PhCH_2NH_3^+$, it was estimated as described for $Ph(CH_2)_2NO_2$. The degree of meta-substitution was estimated for the disulphonic acid mixture from the ratio of the difference of the high-field absorption at ca. δ 8.4 (which comprises only the 6'-H of the 2', 4'-disulphonic acid) and the absorption area between this signal and the low-field doublet with J = 1.5Hz (which comprises the 5'-H of the 2',4'-disulphonic acid and the three aromatic hydrogens of the 3',5'-disulphonic acid) to the total aromatic absorption.

As to the $Ph(CH_2)_n NMe_3^+$ ions, the degree of ortho-substitution of $PhCH_2 NMe_3^+$ was determined from the ratio of the low-field benzylic to the total benzylic absorption and that of the higher homologues obtained by subtraction of the percentages of para- and meta-substitution from 100. For $Ph(CH_2)_n NMe_3^+$ (n = 2-4) the content of the p-sulphonic acid was estimated from the contribution of high-field part of its AB pattern (which in the 360 MHz spectrum is at 42 Hz higher field than the main absorption of the *meta*-isomer) to the total aromatic absorption. The degree of meta-substitution of all the trimethylammonium ions was obtained from the disulphonic acid mixture and calculated (i) for PhCH₂NMe₃⁺ from the contribution of the specific aromatic singlet absorptions of the 3',5'-disulphonic acid to the total aromatic absorption, (ii) in general from the estimated ratio of the partly overlapping singlets of the 4'-H of the 3',5'-disulphonic acid and the 3'-H of the 2',4'disulphonic acid.

For all substrates, with the exception of $Ph(CH_2)_n NMe_3^+$ (n = 2, 3, 4) (see earlier), the degree of para-substitution was taken to be the difference between the contents of the 2',4'-isomer in the disulphonic acid mixture and the orthoisomer in the monosulphonic acid mixture.

The 360 MHz facilities at the University of Groningen were made available by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for the Advancement of Pure Research (ZWO). The authors are grateful to Dr. P. K. Maarsen for valuable suggestions, and to Professor J. H. Ridd for helpful correspondence.

[9/135 Received, 29th January, 1979]

REFERENCES

¹ Part 75, K. Lammertsma and H. Cerfontain, preceding

paper. ² (a) J. H. Rees, J. H. Ridd, and A. Ricci, J.C.S. Perkin II, 1976, 294 and earlier papers in this series; (b) A. Gastaminza, J. H. Ridd, and F. Roy, J. Chem. Soc. (B), 1969, 684 and earlier papers in this series; A. Ricci, F. Bernardi, R. Danieli, D. Macciantelli, and J. H. Ridd, Tetrahedron, 1978, 34, 193.

³ F. L. Riley and E. Rothstein, J. Chem. Soc., 1964, 3872; H. M. Gilow, M. de Shazo, and W. C. van Cleave, J. Org. Chem., 1971, **36**, 1745; E. Malinski, A. Piekos, and T. A. Modro, Canad.

J. Chem., 1975, 53, 1468. ⁴ H. Cerfontain and Z. R. H. Schaasberg-Nienhuis, J.C.S. Perkin II, 1976, 1780.

⁵ A. Koeberg-Telder and H. Cerfontain, J.C.S. Perkin II, 1976, 1776. ⁶ W. F. Reynolds, T. A. Modro, and P. G. Mezey, J.C.S.

Perkin II, 1977, 1066. ⁷ A. W. Kaandorp, H. Cerfontain, and F. L. J. Sixma, Rec.

Trav. chim., 1962, 81, 969. ⁸ A. W. Kaandorp, H. Cerfontain, and F. L. J. Sixma, Rec.

Trav. chim., 1963, 82, 113.

P. K. Maarsen and H. Cerfontain, J.C.S. Perkin 11, 1977, 1008; H. Cerfontain, Internat. J. Sulfur Chem. A, 1972, 297.
 ¹⁰ C. Ris and H. Cerfontain, J.C.S. Perkin II, 1975, 1438

11

12

13

J. C. D. Brand and A. Rutherford, J. Chem. Soc., 1952, 3927.
J. C. D. Brand, J. Chem. Soc., 1950, 1004.
J. C. D. Brand and W. C. Horning, J. Chem. Soc., 1952, 3922. 14 Č. W. F. Kort and H. Cerfontain, Rec. Trav. chim., 1969, 88, 1298.

¹⁵ H. Cerfontain, Rec. Trav. chim., 1965, 84, 551.

¹⁶ H. Cerfontain, 'Mechanistic Aspects in Aromatic Sulphonation and Desulphonation,' Interscience, New York, 1968, p. 130. ¹⁷ H. Cerfontain and Z. R. H. Schaasberg-Nienhuis, *J.C.S.*

Perkin II, 1974, 536. 18 H. Cerfontain and C. W. F. Kort, Internat. J. Sulfur Chem.,

1971, 6, 123.

¹⁹ C. W. F. Kort and H. Cerfontain, Rec. Trav. chim., 1967, 86, 865.

20 A. J. Prinsen and H. Cerfontain, Rec. Trav. chim., 1969, 88, 833; H. Cerfontain, F. L. J. Sixma, and L. Vollbracht, Rec. Trav. chim., 1963, 82, 659.

²¹ R. Danieli, A. Ricci, H. M. Gilow, and J. H. Ridd, J.C.S. Perkin II, 1974, 1477.

²² J. H. Ridd, in 'Studies on Chemical Structure and Reac-tivity,' J. H. Ridd ed., Methuen, London, 1966, p. 137; J. W. Barnett, R. B. Moodie, K. Schofield, and J. B. Weston, J.C.S. Perkin II, 1975, 648.

²³ J. H. Rees and J. H. Ridd, J.C.S. Perkin II, 1976, 285.
²⁴ J. H. Ridd, personal communication (correspondence 15-12-78)

²⁵ Z. R. H. Nienhuis, W. J. Spillane, and H. Cerfontain, Canad. J. Chem., 1972, 50, 1591.

26 P. K. Maarsen and H. Cerfontain, J.C.S. Perkin II, 1977, 921.

²⁷ A. Tetsuro, J. Pharm. Soc. Japan, 1952, **72**, 1177; C. K. Ingold, J. Chem. Soc., 1928, 3126.

¹⁸ G. Devoto, Gazzetta, 1934, **64**, 371

29 N. Kornblum, H. O. Larson, R. K. Blackwood, D. D. Mooberry, E. P. Oliveto, and G. E. Graham, J. Amer. Chem. Soc., 1956, 78, 1497.

³⁰ T. A. Kortekaas and H. Cerfontain, J.C.S. Perkin II, 1978, 445.

31 C. W. F. Kort and H. Cerfontain, Rec. Trav. chim., 1969, 88, 860.

³² H. Cerfontain, A. Koeberg-Telder, C. Kruk, and C. Ris, Analyt. Chem., 1974, **46**, 72.

³³ H. de Vries and H. Cerfontain, Rec. Trav. chim., 1967, 86, 873. ³⁴ A. Koeberg-Telder and H. Cerfontain, J.C.S. Perkin II,

1973, 633.

³⁵ H. Cerfontain and Z. R. H. Schaasberg-Nienhuis, J.C.S. Perkin II, 1973, 1413.